

Galactic evolution of D, ³He and ⁴He

Donatella Romano

Dipartimento di Astronomia, Università di Bologna and INAF–Osservatorio Astronomico di Bologna

Outline of the talk

- Historic overview: D, ³He and ⁴He evolution before and after WMAP
- Current challenges: (1) true (local) deuterium abundance and galaxy formation scenarios
- Current challenges: (2) Galactic evolution of ³He and the need for a new stellar physics
- Current challenges: (3) extreme ⁴He-rich stars: the tip of the iceberg of an '⁴He problem'?
- Conclusions

Historic overview (I):

D, ³He and ⁴He in the <u>pre-WMAP</u> era

Historic overview (I): D, ³*He and ⁴He in the <u>pre-WMAP</u> era*

High primordial D...

Carswell et al. (1994, MNRAS, 268, L1) Songaila et al. (1994, Nature, 368, 599)

... or low primordial D?

Burles & Tytler (1998a, ApJ, 499, 699) Burles & Tytler (1998b, ApJ, 507, 732) O'Meara et al. (2001, ApJ, 552, 718) Kirkman et al. (2003, ApJS, 149, 1)

Historic overview (I): D, ³He and ⁴He in the <u>pre-WMAP</u> era

High primordial D...

Carswell et al. (1994, MNRAS, 268, L1) Songaila et al. (1994, Nature, 368, 599)

... or low primordial D?

Burles & Tytler (1998a, ApJ, 499, 699) Burles & Tytler (1998b, ApJ, 507, 732) O'Meara et al. (2001, ApJ, 552, 718) Kirkman et al. (2003, ApJS, 149, 1)

Low primordial ⁴He...

Olive et al. (1997, ApJ, 483, 788) Peimbert et al. (2002, ApJ, 565, 668)

... or high primordial ⁴He?

Izotov et al. (1994, ApJ, 435, 647) Izotov et al. (1999, ApJ, 527, 757)

Historic overview (I):

D, ³He and ⁴He in the <u>pre-WMAP</u> era

November 12, 2009

GCE basics

GCE describes how the abundances of several chemical species and their isotopes evolve in a galaxy, owing to the processes of star formation, infall and/or outflow of gas and return of processed matter from dying stars.

Good models for the Galaxy must reproduce local properties (G-dwarf metallicity distribution, age-metallicity relation, trends of [X/Fe] versus [Fe/H] for several elements, composition of the Sun at birth), as well as radial profiles of gas and stars, rates of SNeII, SNeIa and novae in the disc, and the shape and magnitude of any abundance gradient.

Not a well-sounded astrophysical theory yet !!!

Historic overview (I): D, ³He and ⁴He in the <u>pre-WMAP</u> era

Hint from GCE models:

The Deuterium astration factor,

 $\mathbf{f}_{\mathrm{D}} \equiv (\mathbf{D}/\mathbf{H})_{\mathrm{P}}/(\mathbf{D}/\mathbf{H})_{\mathrm{ISM}},$

is modest, of the order of a factor of 3-2 or even less

(Audouze & Tinsley 1974, ApJ, 192, 487; Steigman & Tosi 1992, ApJ, 401, 150: Edmunds 1994, MNRAS, 270, L37; Galli et al. 1995, ApJ, 443, 536; Prantzos 1996, A&A, 310, 106; Tosi et al. 1998, ApJ, 498, 226; Chiappini et al. 2002, A&A, 395, 789)

Figure from Galli et al. (1995)

Historic overview (I): D, ³He and ⁴He in the <u>pre-WMAP</u> era

Hint from GCE models:

The Deuterium astration factor,

 $\mathbf{f}_{\mathrm{D}} \equiv (\mathbf{D}/\mathbf{H})_{\mathrm{P}}/(\mathbf{D}/\mathbf{H})_{\mathrm{ISM}},$

is modest, of the order of a factor of 3-2 or even less

(Audouze & Tinsley 1974, ApJ, 192, 487; Steigman & Tosi 1992, ApJ, 401, 150: Edmunds 1994, MNRAS, 270, L37; Galli et al. 1995, ApJ, 443, 536; Prantzos 1996, A&A, 310, 106; Tosi et al. 1998, ApJ, 498, 226; Chiappini et al. 2002, A&A, 395, 789)

Historic overview (I): D, ³He and ⁴He in the <u>pre-WMAP</u> era

Well, there have been exceptions...

Astration factor as high as 10, if an early Galactic wind develops!

(e.g. Scully et al. 1997, ApJ, 476, 521)

November 12, 2009

Historic overview (I):

D, ³He and ⁴He in the <u>pre-WMAP</u> era

Well, there have been exceptions...

Astration factor as high as 10, if an early Galactic wind develops!

(e.g. Scully et al. 1997, ApJ, 476, 521)

November 12, 2009

Historic overview (I):

D, ³He and ⁴He in the <u>pre-WMAP</u> era

... and you really don't want to overproduce ³He!

Models:

THICK LINES: Chiappini et al. (2002) THIN LINES: Tosi (1988)

Assumption: ≥93% of low-mass stars destroy ³He

Data:

Geiss & Gloeckler (1998) Bania et al. (2002)

Figure from Romano et al. (2003)

Historic overview (I):

D, ³He and ⁴He in the <u>pre-WMAP</u> era

... and what about ⁴He?

Well, it seems that GCE modelers didn't care much about ⁴He evolution in the Milky Way...

Historic overview (I):

D, ³He and ⁴He in the <u>pre-WMAP</u> era

... and what about ⁴He?

Well, it seems that GCE modelers didn't care much about ⁴He evolution in the Milky Way...

General consensus that $\Delta Y | \Delta Z$ must lie somewhere in the range 1.5–3

High value for Y_{P} favored

Historic overview (I):

D, ³He and ⁴He in the <u>pre-WMAP</u> era

Summary of GCE results:

- Low (D/H)_P
- (High Y_P)

 Some <u>unknown physical process</u> must destroy ³He in ~93 % of low-mass stars

Historic overview (II):

D, ³He and ⁴He in the post-WMAP era

November 12, 2009

Mean and 68% Confidence Errors

 $A = 0.83^{+0.09}_{-0.08}$

 $h = 0.71^{+0.04}_{-0.03}$

 $n_s = 0.93 \pm 0.03$ $dn_s/d\ln k = -0.031^{+0.016}_{-0.018}$

 $\Omega_b h^2 = 0.0224 \pm 0.0009$

 $\Omega_m h^2 = 0.135^{+0.008}_{-0.009}$

 $\sigma_8 \Omega_m^{0.6} = 0.38^{+0.04}_{-0.05}$

 $\Omega_b = 0.044 \pm 0.004$

 $\Omega_m = 0.27 \pm 0.04$

 $t_0 = 13.7 \pm 0.2 \text{ Gyr}$

 $\tau = 0.17 \pm 0.06$ $\sigma_8 = 0.84 \pm 0.04$

Historic overview (II): D, ³*He and* ⁴*He in the post-WMAP era*

Table 10. Basic and Derived Cosmological Parameters: Running Spectral Index Model^a

Amplitude of fluctuations Spectral Index at $k = 0.05 \text{ Mpc}^{-1}$

Hubble Constant

Barvon Density

Matter Density

Optical Depth

Age of the Universe

Decoupling Redshift

Reionization Redshift^b

Derivative of Spectral Index

Matter Power Spectrum Normalization

Barvon Density/Critical Density

Matter Density/Critical Density

Age of the Universe at Decoupling

Thickness of Surface of Last Scatter

Thickness of Surface of Last Scatter

Sound Horizon at Decoupling

Acoustic Angular Scale^c

Barvon/Photon Ratio

Current Density of Baryons

Redshift of Matter/Radiation Equality

Characteristic Amplitude of Velocity Fluctuations

Angular Diameter Distance to the Decoupling Surface

 $z_{r} = 17 \pm 4$ $z_{dec} = 1089 \pm 1$ $t_{dec} = 379^{+8}_{-7} \text{ kyr}$ $\Delta z_{dec} = 195 \pm 2$ $\Delta t_{dec} = 118^{+2}_{-2} \text{ kyr}$ $z_{eq} = 3233^{+194}_{-210}$ $r_{s} = 147 \pm 2 \text{ Mpc}$ $d_{A} = 14.0^{+0.3}_{-0.3} \text{ Gpc}$ $\eta_{10} \equiv 10^{10} \eta = 6.1(+0.3/-0.2)$

Spergel et al. (2003, ApJS, 148, 175)

^aFit to the WMAP , CBI, ACBAR, 2dFGRS and Lyman α forest data

 $\ell_A = 301 \pm 1$

 $\eta = (6.1^{+0.3}_{-0.2}) \times 10^{-10}$

Historic overview (II): D, ³He and ⁴He in the <u>post-WMAP</u> era

- Important, independent confirmation of GCE results!
- Now, the primordial abundances of the light elements are firmly bound!

Figure from Romano et al. (2003)

The present (I): the (un)true local D abundance

Talks by Linsky, Prodanovic and Hébrard + Monday afternoon discussion...

What is the local value of the D abundance?

November 12, 2009

IAU Symposium 268: Light elemer

The present (I):

the (un)true local D abundance

Solar neighbourhood 105 D/H З 2 0 10 ime (Gyr) 0.2 -0.50 - 1 [Fe/H]GCE models point to a high

value... ...but not that much high!!!

Figure and models from Romano et al. (2006) See also Tosi et al. (1998, ApJ, 498, 226) IAU Symposium 268: Light elemen Geneva, Switzerland - November

105 D/H

3

2

0.2

0.15

0.1

0.05

0

0

The present (I):

D abundance in the Bulge & Disc

Star: D in the Galactic bulge from DCN lines @72.404, 144.83 GHz (Lubowich et al. 2000)

Filled triangle: D from the 327-MHz D line in the outer disc (Rogers et al. 2005) GCE models point to a high value... ...but not that much high!!!

-0.5

[Fe/H]

0

5

time (Gyr)

Solar neighbourhood

10

Figures and models from Romano et al. (2006) See also Tosi et al. (1998, ApJ, 498, 226)

November 12, 2009

The present (II):

³He evolution: the need for a new stellar physics?

Figure from Dearborn et al. (1996)

Problems raised in pioneering works about ³He evolution in the MW (Truran & Cameron 1971, Ap&SS, 14, 179; Talbot & Arnett 1973, ApJ, 186, 51; Reeves et al. 1973, ApJ, 179, 909; Tinsley 1974, ApJ, 192, 629) still unsolved: some ³He-destruction mechanism must be at work in a fraction of low-mass stars in order not to overproduce ³He in the course of Galactic evolution (Galli et al. 1995, ApJ, 443, 536; Dearborn et al. 1996, ApJ, 465, 887; Charbonnel & Do Nascimento 1998, A&A, 336, 915; Sackmann & Boothroyd 1999, ApJ, 510, 217)... but what is it? One must also explain the existence of PNe with high ³He content (e.g. Balser et al. 1999, ApJ, 522, L73)

November 12, 2009

The present (II):

³He evolution: the need for a new stellar physics?

The present (III): the ⁴He problem (part I...)

How do you explain ⁴He abundances as high as ~0.4?

AGB self-pollution scenario

Cottrell & Da Costa (1981, ApJ, 245, L79) Ventura et al. (2001, ApJ, 550, L65) D'Ercole et al. (2008, MNRAS, 391, 825)

FRMS self-pollution scenario

Prantzos & Charbonnel (2006, A&A, 458, 135) Decressin et al. (2007a, A&A, 464, 1029) Decressin et al. (2007b, A&A, 475, 859) Decressin et al. (2008, A&A, 492, 101)

P. Ventura talk

T. Decressin talk

The present (III): the ⁴He problem (part I...)

How do you explain 4He abundances as high as ~0.4?

AGB self-pollution scenario

Cottrell & Da Costa (1981, ApJ, 245, L79) Ventura et al. (2001, ApJ, 550, L65) D'Ercole et al. (2008, MNRAS, 391, 825)

FRMS self-pollution scenario

Prantzos & Charbonnel (2006, A&A, 458, 135) Decressin et al. (2007a, A&A, 464, 1029) Decressin et al. (2007b, A&A, 475, 859) Decressin et al. (2008, A&A, 492, 101)

P. Ventura talk

T. Decressin talk

More exotic explanations: Choi & Yi (2007, MNRAS, 375, L1); Marcolini et al. (2009, MNRAS, 395, 719)

The present (III): the ⁴He problem (part I...)

A new scenario (only for ω Cen... Romano et al. 2007, MNRAS, 376, 405; Romano et al. 2009, arXiv:0910.1299):

Detailed chemical evolution of the putative ω Cen parent galaxy ($\mathcal{M}_{dSph} = 10^9 M_{\odot}$):

Strong differential galactic winds reduce the effective metal yields

SN products easily escape the galactic potential well, whereas elements restored to the ISM through low-energy stellar winds are mostly retained independently of whether they are produced by AGBs or FRMSs

The present (III):

the ⁴He problem (part I...)

Figure from Romano et al. (2009)

"THE ANSWER, MY FRIEND, IS BLOWIN' IN THE WIND..." (Bob Dylan, 1962)

The present (III):

the ⁴He problem (part I...)

Figure from Romano et al. (2009)

"THE ANSWER, MY FRIEND, IS BLOWIN' IN THE WIND..." (Bob Dylan, 1962)

The present (III):

the ⁴He problem (part I...)

Figure from Romano et al. (2009)

"THE ANSWER, MY FRIEND, IS BLOWIN' IN THE WIND..." (Bob Dylan, 1962)

The present (III):

the ⁴He problem (part I...)

Figure from Romano et al. (2009)

"THE ANSWER, MY FRIEND, IS BLOWIN' IN THE WIND..." (Bob Dylan, 1962)

The present (III): the ⁴He problem (part II...)

Mostly indirect estimates of ⁴He abundances in the Galaxy!

Figure from Chiappini et al. (2003)

Figure from Romano et al. (2003)

November 12, 2009

The present (III): the ⁴He problem (part II...)

How much ⁴He in the Sun at birth?

Surface $Y = 0.2420 \, \diamondsuit$ initial Y = 0.27250

Surface *Y* = 0.2285 ♀ initial *Y* = 0.26001

TABLE 6

STANDARD SOLAR MODELS^a

Values	GS98	AGS05
initial X	0.70866	0.72594
initial Y	0.27250	0.26001
initial Z	0.01884	0.01405
initial O	0.00879	0.00582
initial O/H	8.89	8.70
initial $\Delta Y / \Delta Z$	1.32	0.88
initial $\Delta Y / \Delta O$	2.82	2.11
surface X	0.7410	0.7586
surface Y^{b}	0.2420 ± 0.0072	0.2285 ± 0.0067
surface Z	0.0170	0.0122
surface O/H^{b}	8.83 ± 0.17	8.66 ± 0.17

^aStandard solar models by Bahcall et al. (2006). The GS98 and AGS05 columns correspond to models with the heavy element abundances derived from photospheric observations by Grevesse & Sauval (1998) and by Asplund et al. (2005) respectively.

^bThe errors are the conservative ones adopted by Bahcall et al. (2006).

Table from Carigi & Peimbert (2008)

Conclusions

GCE models (at least some of them) are fully consistent with the relatively high value of $(D/H)_{LISM} \sim 2.0 \times 10^{-5}$ suggested by Prodanovic, Steigman & Fields (2009) from their Bayesian analysis of FUSE data.

The need for some 'extra mixing' destroying ³He in most (> 90%) of $1-2 M_{\odot}$ stars came from GCE arguments more than 30 years ago! The way towards the understanding of the underlying physical processes has been a long way, but... see next talk!

It is still debated whether the chemical peculiarities seen in a fraction of Galactic GC stars are due to self-pollution from AGBs or FRMSs. We propose that in very massive GCs (as ω Cen) both stellar categories have polluted the ISM, and that the observed chemical properties have been driven by galactic outflows preferentially enriched in metals.